Abstract

We have detected asymmetry in the symbiotic star CH Cyg through the measurement of precision closure-phase with the IONIC beam combiner, at the IOTA interferometer. The position of the asymmetry changes with time and is correlated with the phase of the 2.1-yr period found in the radial velocity measurements for this star. We can model the time-dependent asymmetry either as the orbit of a low-mass companion around the M giant or as an asymmetric, 20% change in brightness across the M giant. We do not detect a change in the size of the star during a 3 year monitoring period neither with respect to time nor with respect to wavelength. We find a spherical dust-shell with an emission size of 2.2+/-0.1 D* FWHM around the M giant star. The star to dust flux ratio is estimated to be 11.63+/-0.3. While the most likely explanation for the 20% change in brightness is non-radial pulsation we argue that a low-mass companion in close orbit could be the physical cause of the pulsation. The combined effect of pulsation and low-mass companion could explain the behaviour revealed by the radial-velocity curves and the time-dependent asymmetry detected in the closure-phase data. If CH Cyg is a typical long secondary period variable then these variations could be explained by the effect of an orbiting low-mass companion on the primary star.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.