Abstract

Upconversion nanoparticle (UCNP)-based luminescence resonance energy transfer (LRET) systems are a powerful tool widely used to detect organic molecules or metal ions because of their simplicity and high sensitivity. The sandwich structure NaYF4:Er3+,Yb3+@NaYF4@NH2 UCNPs, as a highly selective and sensitive aqueous probe for detecting nitroaromatics, has been designed and prepared by a cothermolysis method and modified with polyetherimide to acquire amine groups on the surface of the core/shell UCNPs. The detection principle of nitroaromatics is based on LRET, which forms the Meisnheimer complex between the electron-deficient cyclobenzene of nitroaromatics and the electron-rich amino group on the surface of the sandwich structure UCNPs. As a consequence, nitroaromatics can be brought into close proximity to the sandwich structure UCNPs. With the increase of nitroaromatics (2,4,6-trinitrophenol and 2,4,6-trinitrotoluene) concentrations, the sandwich structure NaYF4:Er3+,Yb3+@NaYF4@NH2 UCNPs display a dramatic luminescent quenching effect at 407 nm and 540 nm under 980 nm excitation. The luminescent quenching intensity of the sandwich structure UCNPs is linearly correlated to the concentration of the nitroaromatics. The detection limit of 2,4,6-trinitrophenol (TNP) and 2,4,6-trinitrotoluene (TNT) are 0.78 and 0.77 ng ml−1, respectively. Therefore, the sandwich structure of NaYF4:Er3+,Yb3+@NaYF4@NH2 UCNPs can act as a valuable probe to detect nitroaromatics in public safety and security conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call