Abstract

Multiple film-coated nitric oxide sensors have been fabricated using Nafion and electropolymerized polyeugenol or o-phenylenediamine on 30-microm carbon fiber disk electrodes. This is a rare study that utilizes disk electrodes rather than the widely used protruding tip microelectrodes in order to measure from a biological environment. These electrodes have been used to evaluate the differences in nitric oxide release between two different identified neurons in the pond snail, Lymnaea stagnalis. These results show the first direct measurements of nitric oxide release from individual neurons. The electrodes are very sensitive to nitric oxide with a detection limit of 2.8 nM and a sensitivity of 9.46 nA microM-1. The sensor was very selective against a variety of neurochemical interferences such as ascorbic acid, uric acid, and catecholamines and secondary oxidation products such as nitrite. Nitric oxide release was measured from the cell bodies of two neurons, the cerebral giant cell (CGC) and the B2 buccal motor neuron, in the intact but isolated CNS. A high-Ca2+/high-K+ stimulus was capable of evoking reproducible release. For a given stimulus, the B2 neuron released more nitric oxide than the CGC neuron; however, both cells were equally suppressed by the NOS inhibitor l-NAME.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.