Abstract

On the basis of the known cry gene sequences of Bacillus thuringiensis, three sets of primers were designed from four conserved blocks found in the delta-endotoxin-coding region. The primer pairs designed amplify the regions between blocks 1 and 5, 2 and 5, and 1 and 4. In silico analyses indicated that 100% of the known three-domain cry gene sequences can be amplified by these sets of primers. To test their ability to amplify known and unknown cry gene sequences, 27 strains from the CINVESTAV (LBIT series) collection showing atypical crystal morphology were selected. Their DNA was used as the template with the new primer system, and after a systematic amplification and sequencing of the amplicons, each strain showed one or more cry-related sequences, totaling 54 different sequences harbored by the 27 strains. Seven sequences were selected on the basis of their low level of identity to the known cry sequences, and once cloning and sequencing of the complete open reading frames were done, three new cry-type genes (primary ranks) were identified and the toxins that they encode were designated Cry57Aa1, Cry58Aa1, and Cry59Aa1 by the B. thuringiensis Toxin Nomenclature Committee. The rest of the seven sequences were classified Cry8Ka2, Cry8-like, Cry20Ba1, and Cry1Ma1 by the committee. The crystal morphology of the selected strains and analysis of the new Cry protein sequences showed interesting peculiarities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.