Abstract

NMR characterization of natural abundance (15)N in phosphorus-nitrogen compounds can be performed through (31)P using inverse detection methods. When the (31)P-(15)N scalar coupling is small, its observation is greatly disturbed by the residual signal coming from the 99.6% abundant (14)N isotopomer that usually is not completely suppressed by the phase cycle of the sequence. The combined use of pulsed field gradients to suppress this residual signal and the enhanced sensitivity (31)P, (15)N[(1)H]-esHSQC experiment affords artifact-free spectra with good signal-to-noise ratio, which allows the accurate measurement of (15)N NMR parameters such as chemical shifts and coupling constants with the benefits of phosphorus detection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call