Abstract

Nuclear magnetic resonance (NMR) spectroscopy routinely characterizes the unique spin systems of molecules using a combination of chemical shift and J-coupling interactions for the 1H and 13C nuclei. However, at Earth’s magnetic field, chemical shifts are unresolvable and the ability to characterize structure relies solely on the J-couplings. Fortuitously, the J-couplings at Earth’s field provides the same spin system information as high field, but only requires detection of the 1H nucleus. We report the first identification of the multiple natural abundance 1H–13C spin systems on organic molecules detected at Earth’s magnetic field. The results clearly demonstrate the feasibility of Earth’s field NMR to characterize small organic molecules without costly enrichment strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.