Abstract

Plastic pollution has steadily become a global issue due to its ubiquity and degradation into micro and nanoparticles. Herein, we report the construction of surface-enhanced Raman scattering (SERS)-active array substrates with regenerated cellulose (RC) and plasmonic nanoparticles (AuNRs and AgNWs) via a simple vacuum-assisted filtration method using a silicon mask for rapid nanoplastic detection. The AgNWs/RC film exhibited a SERS intensity of crystal violet approximately six times higher than that of the AuNRs/RC film with a high enhancement factor of 1.8 × 107. Moreover, the AgNWs/RC film exhibits a better SERS activity for polystyrene nanoplastic detection than the AuNRs/RC film because the dense AgNW network structures are well suited for nanoplastic detection. The AgNWs/RC film can detect PS nanoplastics down to 0.1 mg/mL with a good reproducibility of the SERS signal. The low-cost, flexible, and highly sensitive AgNWs/RC films could provide an efficient and rapid SERS-based method for nanoplastic detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call