Abstract

WASP-52b is a low-density hot Jupiter orbiting a moderately active K2V star. Previous low-resolution studies have revealed a cloudy atmosphere and found atomic Na above the cloud deck. Here we report on the detection of excess absorption at the Na doublet, the Hαline, and the K D1line. We derived a high-resolution transmission spectrum based on three transits of WASP-52b, observed with the ultra-stable, high-resolution spectrograph ESPRESSO at the Very Large Telescope array. We measured a line contrast of 1.09 ± 0.16% for Na D1, 1.31 ± 0.13% for Na D2, 0.86 ± 0.13% for Hα, and 0.46 ± 0.13% for K D1, with a line FWHM range of 11–22 km s−1. We also found that the velocity shift of these detected lines during the transit is consistent with the planet’s orbital motion, thus confirming their planetary origin. We did not observe any significant net blueshift or redshift that could be attributed to planetary winds. We used activity indicator lines as control but found no excess absorption. However, we did notice signatures arising from the Center-to-Limb variation (CLV) and the Rossiter-McLaughlin (RM) effect at these control lines. This highlights the importance of the CLV + RM correction in correctly deriving the transmission spectrum, which, if not corrected, could resemble or cancel out planetary absorption in certain cases. WASP-52b is the second non-ultra-hot Jupiter to show excess Hαabsorption after HD 189733b. Future observations targeting non-ultra-hot Jupiters that show Hαcould help reveal the relation between stellar activity and the heating processes in the planetary upper atmosphere.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call