Abstract

We have determined partial sequences of the gyrA and parC genes of Enterobacter cloacae type strain including the regions analogous to the quinolone resistance-determining region of the Escherichia coli gyrA gene. The deduced 65- and 49-amino acid sequences of the determined regions of the E. cloacae gyrA and parC genes were identical to the corresponding regions of the E. coli GyrA and ParC proteins, respectively. We examined 40 clinical strains of E. cloacae isolated from patients with urinary tract infection for susceptibilities to nalidixic acid and ciprofloxacin. Based on the nalidixic acid and ciprofloxacin MICs, these isolates were divided into 19 quinolone-susceptible strains (MICs of nalidixic acid, 3.13-25 mg/L; MICs of ciprofloxacin, < or = 0.025 mg/L) and 21 quinolone-resistant strains (MICs of nalidixic acid, 400 to > 800 mg/L; MICs of ciprofloxacin, 0.39-100 mg/L). We analysed five quinolone-susceptible and 21 quinolone-resistant strains for alterations in GyrA and ParC. The five quinolone-susceptible strains had amino acid sequences in GyrA and ParC identical to those of type strain. Of the 21 quinolone-resistant isolates, three (MICs of nalidixic acid, 400 to > 800 mg/L; MICs of ciprofloxacin, 0.39-3.13 mg/L) had a single amino acid change at the position equivalent to Ser-83 in the E. coli GyrA protein and no alterations in ParC; one (MIC of nalidixic acid, > 800 mg/L; MIC of ciprofloxacin, 3.13 mg/L) had a single amino acid change at Ser-83 in GyrA and a single amino acid change at the position equivalent to Glu-84 in the E. coli ParC protein; two (MIC of nalidixic acid, > 800 mg/L; MIC of ciprofloxacin, 25 mg/L) had double amino acid changes at Ser-83 and Asp-87 in GyrA and no alterations in ParC; and 15 (MICs of nalidixic acid, > 800 mg/L; MICs of ciprofloxacin, 25-100 mg/L) had double amino acid changes at Ser-83 and Asp-87 in GyrA and a single amino acid change at Ser-80 or Glu-84 in ParC. This study suggests, that in clinical isolates of E. cloacae, DNA gyrase is a primary target of quinolones, that only a single amino acid change at Ser-83 in GyrA is sufficient to generate high-level resistance to nalidixic acid and to decrease susceptibility to ciprofloxacin, and that the accumulation of amino acid changes in GyrA and the simultaneous presence of the ParC alterations play a central role in developing high-level resistance to ciprofloxacin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.