Abstract
Isolation forest and elliptic envelope are used to detect geochemical anomalies, and the bat algorithm was adopted to optimize the parameters of the two models. The two bat-optimized models and their default-parameter counterparts were used to detect multivariate geochemical anomalies from the stream sediment survey data of 1:50 000 scale collected from the Helong district, Jilin Province, China. Based on the data modeling results, the receiver operating characteristic (ROC) curve analysis was performed to evaluate the performance of the two bat-optimized models and their default-parameter counterparts. The results show that the bat algorithm can improve the performance of the two models by optimizing their parameters in geochemical anomaly detection. The optimal threshold determined by the Youden index was used to identify geochemical anomalies from the geochemical data points. Compared with the anomalies detected by the elliptic envelope models, the anomalies detected by the isolation forest models have higher spatial relationship with the mineral occurrences discovered in the study area. According to the results of this study and previous work, it can be inferred that the background population of the study area is complex, which is not suitable for the establishment of elliptic envelope model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.