Abstract
This paper presents a fast and reliable method for moving object detection with moving cameras (including pan---tilt---zoom and hand-held cameras). Instead of building large panoramic background model as conventional approaches, we construct a small-size background model, whose size is the same as input frame, to decrease computation time and memory storage without loss of detection performance. The small-size background model is built by the proposed single spatio-temporal distributed Gaussian model and this can solve false detection results arising from registration error and background adaptation problem in moving background. More than the proposed background model based on spatial and temporal information, several pre- and post-processing methods are adopted and organized systematically to enhance the detection performances. We evaluate the proposed method with several video sequences under difficult conditions, such as illumination change, large zoom variation, and fast camera movement, and present outperforming detection results of our algorithm with fast computation time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.