Abstract

Movement intentions of motor impaired individuals can be detected in laboratory settings via electroencephalography Brain–Computer Interfaces (EEG-BCIs) and used for motor rehabilitation and external system control. The real-world BCI use is limited by the costly, time-consuming, obtrusive, and uncomfortable setup of scalp EEG. Ear-EEG offers a faster, more convenient, and more aesthetic setup for recording EEG, but previous work using expensive amplifiers detected motor intentions at chance level. This study investigates the feasibility of a low-cost ear-EEG BCI for the detection of tongue and hand movements for rehabilitation and control purposes. In this study, ten able-bodied participants performed 100 right wrist extensions and 100 tongue-palate movements while three channels of EEG were recorded around the left ear. Offline movement vs. idle activity classification of ear-EEG was performed using temporal and spectral features classified with Random Forest, Support Vector Machine, K-Nearest Neighbours, and Linear Discriminant Analysis in three scenarios: Hand (rehabilitation purpose), hand (control purpose), and tongue (control purpose). The classification accuracies reached 70%, 73%, and 83%, respectively, which was significantly higher than chance level. These results suggest that a low-cost ear-EEG BCI can detect movement intentions for rehabilitation and control purposes. Future studies should include online BCI use with the intended user group in real-life settings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.