Abstract

Increased levels of mitochondrial coupling factor 6 (CF6) are present in the peripheral blood of patients with preeclamptic pregnancies, and are particularly evident in cases of early-onset or severe preeclampsia. The present study examined the location and expression levels of CF6 in the placental tissue and its effect on the biological behavior of trophoblast cells. Placental tissue microarrays, including placental villous cytotrophoblast and extravillous cytotrophoblast microarrays, were used to detect the location and relative expression levels of CF6 in the placenta using immunohistochemistry. It was found that CF6 was expressed in both the normal and preeclamptic placenta, but its levels were higher in the preeclamptic tissues. In addition, the effects of the hypoxic environment on the biological behaviors of trophoblast cells were investigated in the JAR and JEG-3 cell lines. Following induction of hypoxia, the expression levels of CF6 were increased. Moreover, exogenous addition of human recombinant CF6 attenuated cell invasion, but exerted no effect on cell proliferation. At the molecular level, the expression levels of MMP-2 were decreased and were accompanied with a reduction in cell invasion following addition of exogenous CF6. In conclusion, the increased expression levels of CF6 and its effects in reducing the invasive abilities of trophoblast cells may be involved in the pathogenesis of severe preeclampsia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.