Abstract

ObjectiveEarly detection of mild cognitive impairment (MCI) and Alzheimer’s disease (AD) can increase access to treatment and assist in advance care planning. However, the development of a diagnostic system that d7oes not heavily depend on cognitive testing is a major challenge. We describe a diagnostic algorithm based solely on gait and machine learning to detect MCI and AD from healthy. MethodsWe collected “single-tasking” gait (walking) and “dual-tasking” gait (walking with cognitive tasks) from 32 healthy, 26 MCI, and 20 AD participants using a computerized walkway. Each participant was assessed with the Montreal Cognitive Assessment (MoCA). A set of gait features (e.g., mean, variance and asymmetry) were extracted. Significant features for three classifications of MCI/healthy, AD/healthy, and AD/MCI were identified. A support vector machine model in a one-vs.-one manner was trained for each classification, and the majority vote of the three models was assigned as healthy, MCI, or AD. ResultsThe average classification accuracy of 5-fold cross-validation using only the gait features was 78% (77% F1-score), which was plausible when compared with the MoCA score with 83% accuracy (84% F1-score). The performance of healthy vs. MCI or AD was 86% (88% F1-score), which was comparable to 88% accuracy (90% F1-score) with MoCA. ConclusionOur results indicate the potential of machine learning and gait assessments as objective cognitive screening and diagnostic tools. SignificanceGait-based cognitive screening can be easily adapted into clinical settings and may lead to early identification of cognitive impairment, so that early intervention strategies can be initiated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call