Abstract

In this paper, we explored the feasibility of using ultrasound Nakagami-m parametric imaging based on Gaussian pyramid decomposition (GPD) to detect microwave ablation coagulation areas. Monte Carlo simulation and phantom simulation results demonstrated that a 2-layer GPD model was sufficient to achieve the same m parameter estimation accuracy, smoothness and resolution as 3-layer and 4-layer. The performances of GPD, moment-based estimator (MBE) and window-modulated compounding (WMC) algorithms were compared in terms of parameter estimation, smoothness, resolution and contrast-to-noise (CNR). Results showed that the m parameter estimation obtained by GPD algorithm was better than that of MBE and WMC algorithms except the small window size (27 × 5). When using a window size of >3 pulse lengths, GPD algorithm could achieve better smoothness and CNR than MBE and WMC algorithms, but there was a certain loss of axial resolution. The computation time of GPD algorithm was less than that of WMC algorithm, while about 2.24 times that of MBE algorithm. Experimental results of porcine liver microwave ablation ex vivo (n = 20) illustrated that the average areas under the operating characteristic curve (AUCs) of Nakagami mGPD, mMBE and mWMC parametric imaging and homodyned-K (HK) α and k parametric imaging to detect coagulation areas were significantly improved by polynomial approximation (PAX). Kruskal-Wallis test showed that the accuracy of coagulation area detection obtained by PAX imaging of mGPD parameter had no significant difference with that of mMBE, mWMC, HK_α and HK_k parameters. This preliminary study suggested that Nakagami imaging based on GPD algorithm may have the potential to detect microwave ablation coagulation areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.