Abstract

As a new type of persistent pollutant, microplastics pose a serious threat to the earth’s ecological environment and human health. Efficient and reliable microplastic detection technology is of great significance in the management of microplastic pollution. Aiming at the problems of low signal-to-noise ratio (SNR), narrow spectral range and low spectral resolution in traditional microplastic detection technology, a splicing grating spatial heterodyne Raman spectroscopy (SG-SHRS) is proposed in this paper. The splicing grating is composed of four sub-gratings with groove densities of 320, 298, 276 and 254 gr / mm, respectively. Each sub-grating has an independent sub-filter to improve the SNR of the system. The system is simulated, built and calibrated. The actual resolution of the SG-SHRS system is 0.7 cm−1, and the spectral detection range of a single sub-grating is 2947.2 cm−1. Four kinds of microplastics, polyamide (PA), polystyrene (PS), polycarbonate (PC), and polyphenylene sulfide (PPS), were detected by the SG-SHRS system. The complete Raman spectral information of microplastics was obtained, and the peak assignment of Raman characteristic peaks of the four kinds of microplastics was analyzed. By comparing the test results with a commercial dispersion spectrometer, it has been proven that the SG-SHRS system has the advantages of high spectral resolution, wide spectral range, and high SNR, and has good application prospects in the field of microplastic detection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call