Abstract

In recent years, chlorophyll fluorescence analysis has become one of the most powerful and widely used techniques available to plant ecophysiologists. In this work, the chlorophyll fluorescence is used in order to evaluate the biotic stress induced by exposure to cyanobacterial toxins (microcystins). Experiments were carried on the aquatic plant Lemna gibba exposed to various concentrations of a microcystins (0.01, 0.03, 0.05, 0.07, 0.15, 0.22 and 0.3 μg equivalent MC-LR.mL −1) during 5 h. The reversibility of the stress changes was also studied following 24 h of treatment. The efficiency and the utility of this biophysical technique were compared to biochemical analysis priory used to evaluate the plant stress induced by such contamination. The results showed that there is a concentration-dependent effect on the measured in vivo chlorophyll fluorescence with significant differences between the control and all concentrations except for 0.01 μg equivalent MC-LR.mL −1. The reversibility tested showed also that after avoiding the contact with the microcystins, the chlorophyll fluorescence measurements were not significantly different from the control. The results showed that if the contact with the microcystins is short and not repeated plants may not suffer from a significant stress. We concluded that this simple and rapid technique based on the variable fluorescence, could be recommended and applied to test the plant stress caused by cyanobacterial toxins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call