Abstract

Methicillin-Resistant Staphylococcus Aureus (MRSA) is a worldwide major pathogenic bacteria that has emerged over the past three decades as the leading cause of nosocomial and community-acquired infections. Biosensors can provide rapid, sensitive, and selective detection of the presence and number of bacteria in various environments. Herein, a novel fluorescence nanoprobe was designed as a biosensor for MRSA detection using dye-incorporated silica nanoparticles (FSiNP). Based on the results of specific surface area analysis using the Brauner Emmett-Teller (BET) method, the surface area of the nanoparticles was obtained at 377.127 m2/g, and the X-ray diffraction (XRD) analysis confirmed that it was in the amorphous phase. Vancomycin, as the bioreceptor, was immobilized on the silica surface through a hydrosilylation reaction, generating the biosensing platform FSiNP-Van. Each modification step was corroborated by the Fourier Transform Infra-Red (FTIR) spectroscopy. The sensing principle was based on the fluorescence-quenching mechanism of FSiNP-Van at 515 nm obtaining a rapid response time of 20 min. The FSiNP-Van nanoprobe provided a wide linear concentration range of 10–106 CFU/mL with a limit of MRSA detection calculated at 1 CFU/mL. The fluorescent nanoprobe demonstrated here is expected to find applications in point-of-care (POC) diagnostics to detect the presence of MRSA bacteria.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call