Abstract

Screening for colonization with methicillin-resistant Staphylococcus aureus (MRSA) is a key aspect of infection control to limit the nosocomial spread of this organism. Current methods for the detection of MRSA in clinical microbiology laboratories, including molecularly based techniques, require a culture step and the isolation of pure colonies that result in a minimum of 20 to 24 h until a result is known. We describe a qualitative in vitro diagnostic test for the rapid detection of MRSA directly from nasal swab specimens (IDI-MRSA; Infectio Diagnostic, Inc., Sainte-Foy, Quebec, Canada), based upon a real-time PCR and direct detection of MRSA via amplicon hybridization with a fluorogenic target-specific molecular beacon probe. Samples from 288 patients were analyzed for the presence of MRSA with the IDI-MRSA assay, compared to detection by either direct plating or enrichment broth selective culture methods. The diagnostic values for this MRSA screening method were 91.7% sensitivity, 93.5% specificity, 82.5% positive predictive value, and 97.1% negative predictive value when compared to culture-based methods. The time from the start of processing of specimen to result was approximately 1.5 h. In our hands, the IDI-MRSA assay is a sensitive and specific test for detection of nasal colonization with MRSA and providing for same-day results, allowing more efficient and effective use of infection control resources to control MRSA in health care facilities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.