Abstract

To evaluate whether non-invasive knee sound measurements can provide information related to the underlying structural changes in the knee following meniscal tear. These changes are explained using an equivalent vibrational model of the knee-tibia structure. First, we formed an analytical model by modeling the tibia as a cantilever beam with the fixed end being the knee. The knee end was supported by three lumped components with features corresponding with tibial stiffnesses, and meniscal damping effect. Second, we recorded knee sounds from 46 healthy legs and 9 legs with acute meniscal tears (n = 34 subjects). We developed an acoustic event ("click") detection algorithm to find patterns in the recordings, and used the instrumental variable continuous-time transfer function estimation algorithm to model them. The knee sound measurements yielded consistently lower fundamental mode decay rate in legs with meniscal tears ( 16 ±13 s - 1) compared to healthy legs ( 182 ±128 s - 1), p < 0.05. When we performed an intra-subject analysis of the injured versus contralateral legs for the 9 subjects with meniscus tears, we observed significantly lower natural frequency and damping ratio (first mode results for healthy: [Formula: see text]injured: [Formula: see text]) for the first three vibration modes (p < 0.05). These results agreed with the theoretical expectations gleaned from the vibrational model. This combined analytical and experimental method improves our understanding of how vibrations can describe the underlying structural changes in the knee following meniscal tear, and supports their use as a tool for future efforts in non-invasively diagnosing meniscal tear injuries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.