Abstract
The meningioma brain tumor detection is more important than the other tumor detection such as Glioma and Glioblastoma, due to its high severity level. The tumor pixel density of meningioma tumor is high and it leads to sudden death if it is not detected timely. The meningioma images are detected using Modified Empirical Mode Decomposition- Convolutional Neural Networks (MEMD-CNN) classification approach. This method has the following stages data augmentation, spatial-frequency transformation, feature computations, classifications and segmentation. The brain image samples are increased using data augmentation process for improving the meningioma detection rate. The data augmented images are spatially transformed into frequency format using MEMD transformation method. Then, the external empirical mode features are computed from this transformed image and they are fed into CNN architecture to classify the source brain image into either meningioma or non-meningioma. The pixels belonging tumor category are segmented using morphological opening-closing functions. The meningioma detection system obtains 99.4% of Meningioma Classification Rate (MCR) and 99.3% of Non-Meningioma Classification Rate (NMCR) on the meningioma and non-meningioma images. This MEMD-CNN technique for meningioma identification attains 98.93% of SET, 99.13% of SPT, 99.18% of MSA, 99.14% of PR and 99.13% of FS. From the statistical comparative analysis of the proposed MEMD-CNN system with other conventional detection systems, the proposed method provides optimum tumor segmentation results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.