Abstract
This project constructs and assesses an image processing approach for lung cancer diagnosis in this study. Image processing techniques are frequently utilized for picture improvement in the detection phase to enable early medical therapy in a variety of medical issues. We suggested a lung cancer detection approach based on picture segmentation in this study. Image segmentation is a level of image processing that is intermediate. To segment a CT scan image, a marker control watershed and region growth technique is applied. Following the detection phases, picture augmentation with the Gabor filter, image segmentation, and feature extraction is performed. We discovered the efficiency of our strategy based on the experimental results. The results demonstrate that the watershed with the masking method, which has great accuracy and robustness, is the best strategy for detecting major features. Keywords: Lung cancer, MATLAB, CT images, Distortion removal, Segmentation, Mortality rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International journal of multidisciplinary advanced scientific research and innovation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.