Abstract

ABSTRACT Background Breathomics is an emerging area focusing on monitoring and diagnosing pulmonary diseases, especially lung cancer. This research aims to employ metabolomic methods to create a breathprint in human-expelled air to rapidly identify lung cancer and its stages. Research design and methods An electronic nose (e-nose) system with five metal oxide semiconductor (MOS) gas sensors, a microcontroller, and machine learning algorithms was designed and developed for this application. The volunteers in this study include 114 patients with lung cancer and 147 healthy controls to understand the clinical potential of the e-nose system to detect lung cancer and its stages. Results In the training phase, in discriminating lung cancer from controls, the XGBoost classifier model with 10-fold cross-validation gave an accuracy of 91.67%. In the validation phase, the XGBoost classifier model correctly identified 35 out of 42 patients with lung cancer samples and 44 out of 51 healthy control samples providing an overall sensitivity of 83.33% and specificity of 86.27%. Conclusions These results indicate that the exhaled breath VOC analysis method may be developed as a new diagnostic tool for lung cancer detection. The advantages of e-nose based diagnostics, such as an easy and painless method of sampling, and low-cost procedures, will make it an excellent diagnostic method in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call