Abstract

The purpose of this study was to evaluate the sensitivity, tumor conspicuity, and image quality of different material decomposition images of phantoms and patients with nearly isodense bone metastases using rapid-kilovoltage-switching dual-energy CT (DECT). Fifty-one semianthropomorphic lumbar spine phantoms embedded with 75 simulated tumors were scanned without and with outer torso-attenuating encasement under the same scan settings. Two radiologists independently reviewed the 70-keV virtual monochromatic and material decomposition images (hydroxyapatite-water, water-hydroxyapatite, cortical bone-water, water-cortical bone). The sensitivity of tumor detection, tumor conspicuity (on a 3-point scale), and image quality (on a 3-point scale) were recorded by two independent readers. McNemar and Wilcoxon signed rank tests were used to compare results between the image reconstructions. Six clinical abdominopelvic DECT scans (three men, three women; mean age, 52 years) with nine nearly isodense lumbar spine tumors missed in the clinical report but confirmed on other scans were also evaluated. The hydroxyapatite-water material decomposition algorithm showed improved sensitivity for isodense lesion detection (without torso phantom encasement, 94% vs 82%, p = 0.031; with torso phantom encasement, 38% vs 18%, p = 0.013), and higher tumor conspicuity scores (p < 0.0001) compared with 70-keV virtual monoenergetic images. Artifacts were more prevalent with all material decomposition images than with 70-keV virtual monoenergetic images. Similar results were seen in the patient study. Dual-energy CT with hydroxyapatite-water material decomposition may improve the detection of bone marrow metastases, especially for subtle isodense tumors. Further study in prospective clinical scans is warranted.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call