Abstract

59 Background: FGFR3 mutations have been identified in ~60-70% of low-stage, non-invasive tumors. Our group and others have developed assays to detect FGFR3 mutations in the urine of bladder cancer patients. However, urine-based assays have been limited by the technical ability to detect rare events in a dilute medium where there is a high background of normal DNA. In these assays, FGFR3 mutations are generally found in ~30% of the urine samples, which is < 50% concordance with the expected detection in tissue. We have now developed an ultra-deep amplicon sequencing technique that increases FGFR3 mutation detection in urine to ~67%, close to the expected detection frequency if every mutation found in tissue could be detected in urine. Methods: Amplicons were designed against FGFR3 exons 7, 10, and 15 using PCR primers containing the adapter sequences for unidirectional sequencing. Primary amplification was performed from DNA isolated from 4 ml of urine. The resulting PCR products were used as template for emulsion PCR and these were then sequenced using the Roche 454 GS Junior. Samples were analyzed for total DNA reads per sample and number of mutant sequencing reads to determine percent mutation. Results: Urine samples from 43 patients with bladder cancer were analyzed by both our previously described qPCR method and the new ultra-deep sequencing approach. Using ultra-deep amplicon sequencing, 24 out of 43 (55.8%) were positive for FGFR3 mutations, while only 5 out of 43 (11.6%) were positive for mutations by qPCR. The urine samples from the 15 newly identified mutations using deep sequencing contained FGFR3 mutations as low as 0.05% mutant DNA. The sensitivity achieved using deep sequencing was 91% concordant with the FGFR3 mutations observed in tissue. Conclusions: We have developed a highly sensitive non-invasive urine based assay that can detect FGFR3 mutant DNA when present at < 1% of the sample and is > 90% concordance with the mutations found in tumor tissues. To our knowledge, this is the first practical application of next generation sequencing technology for diagnostic use.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.