Abstract
This paper describes the effects of laser pulse rate and solution flow rate on the determination of lithium at high pressure for water and 2.5% sodium chloride solutions using laser-induced breakdown spectroscopy (LIBS). Preliminary studies were performed with 0-40 mg L-1 Li solutions, at ambient pressure and at 210 bar, and in static and flowing (6 mL · min-1) regimes, for a combination of four different measurement conditions. The sensitivity of calibration curves depended on the pressure and the flow rate, as well as the laser pulse rate. The sensitivity of the calibration curve increased about 10% and 18% when the pressure was changed from 1 to 210 bar for static and flowing conditions, respectively. However, an effect of flow rate at high pressure for both 2 and 10 Hz laser pulse rates was observed. At ambient pressure, the effect of flow rate was negligible, as the sensitivity of the calibration curve decreased around 2%, while at high pressure the sensitivity increased around 4% when measurements were performed in a flow regime. Therefore, it seems there is a synergistic effect between pressure and flow rate, as the sensitivity increases significantly when both changes are considered. When the pulse rate is changed from 2 to 10 Hz, the sensitivity increases 26-31%, depending on the pressure and flow conditions. For lithium detection limit studies, performed with a laser pulse energy of 2.5 mJ, repetition rate of 10 Hz, gate delay of 500 ns, gate width of 1000 ns, and 1000 accumulations, a value around 40 µg L-1 was achieved for Li solutions in pure water for all four measurement conditions, while a detection limit of about 92 µg L-1 was determined for Li in 2.5% sodium chloride solutions, when high pressure and flowing conditions were employed. The results obtained in the present work demonstrate that LIBS is a powerful tool for the determination of Li in deep ocean conditions such as those found around hydrothermal vent systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.