Abstract

When low contrast photographic images are digitized by a very small aperture, extreme film-grain noise almost completely obliterates the image information. Using a large aperture to average out the noise destroys the fine details of the image. In these situations conventional statistical restoration techniques have little effect, and well chosen heuristic algorithms have yielded better results. In this paper we analyze the noisecheating algorithm of Zweig et al. [J. Opt. Soc. Am. 65, 1347 (1975)] and show that it can be justified by classical maximum-likelihood detection theory. A more general algorithm applicable to a broader class of images is then developed by considering the signal-dependent nature of film-grain noise. Finally, a Bayesian detection algorithm with improved performance is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.