Abstract
Oryza rufipogon is the wild progenitor of cultivated rice Oryza sativa and exhibits high levels of genetic diversity across its distribution, making it a useful resource for the identification of abiotic stress-tolerant varieties and genes that could limit future climate-changed-induced yield losses. To investigate local adaptation in O. rufipogon, we analyzed single nucleotide polymorphism (SNP) data from a panel of 286 samples located across a diverse range of climates. Environmental association analysis (EAA), a genome-wide association study (GWAS)-based method, was used and revealed 15 regions of the genome significantly associated with various climate factors. Genes within these environmentally associated regions have putative functions in abiotic stress response, phytohormone signaling, and the control of flowering time. This provides an insight into potential local adaptation in O. rufipogon and reveals possible locally adaptive genes that may provide opportunities for breeding novel rice varieties with climate change-resilient phenotypes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.