Abstract

Summary Low-temperature soluble carbohydrate accumulations are commonly associated with anthocyanin coloration, attenuated growth, and cold adaptation of cool-season grasses. A total of 647 AFLP markers were tested for associations with anthocyanin coloration, tiller formation, leaf formation, cumulative leaf length, percent soluble carbohydrate, and dry matter regrowth among replicated clones of an admixed Leymus wildrye breeding population evaluated in low-temperature growth chambers. The admixed breeding population was derived from a heterogeneous population of L. cinereus × L. triticoides F1 hybrids, with two additional generations of open pollination. Two AFLP linkage maps, constructed from two full-sib mapping populations derived from the same F1 hybrid population, were integrated to produce a framework consensus map used to examine the distribution of marker-trait associations in the admixed F1OP2 population. Thirty-seven linkage blocks, spanning 258 cM (13.6%) of the 1895 cM consensus map, contained 119 (50%) of the 237 markers showing at least one possible trait association (P < 0.05). Moreover, 28 (68%) of the 41 most significant marker-trait associations (P < 0.005) were located in 15 QTL linkage blocks spanning 112.9 cM (6%) of the linkage map. The coincidence of these 28 significant marker-trait associations, and many less significant associations, in 15 relatively small linkage blocks (0.6 cM to 21.3 cM) provides evidence of admixture linkage disequilibrium QTLs (ALD QTLs) in this heterogeneous breeding population. At least four of the remaining 13 putative marker-trait associations (P < 0.005) were located in genetic map regions lacking other informative markers. The complexity of marker-trait associations results from heterogeneity within and substantial divergence among the parental accessions. Abbreviations: ALD ‐ admixture linkage disequilibrium; CHO ‐ carbohydrate

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.