Abstract
The authors propose a two-step algorithm for almost unsupervised detection of linear structures, in particular, main axes in road networks, as seen in synthetic aperture radar (SAR) images. The first step is local and is used to extract linear features from the speckle radar image, which are treated as road-segment candidates. The authors present two local line detectors as well as a method for fusing information from these detectors. In the second global step, they identify the real roads among the segment candidates by defining a Markov random field (MRF) on a set of segments, which introduces contextual knowledge about the shape of road objects. The influence of the parameters on the road detection is studied and results are presented for various real radar images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Geoscience and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.