Abstract
A spectroscopic study on laser-produced tin plasma utilizing the optical emission spectroscopy (OES) technique is presented. Plasma is produced from a solid tin target irradiated with pulsed laser in room environment. Electron temperature is determined at different laser peak powers from the ratio of line intensities, while electron density is deduced from Saha-Boltzmann equation. A limited number of suitable tin lines are detected, and the effect of the laser peak power on the intensity of emission lines is discussed. Electron temperatures are measured in the range of 0.36 eV–0.44 eV with electron densities of the order 1017 cm–3 as the laser peak power is varied from 11 MW to 22 MW.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.