Abstract

The objective of this study was to assess the performance and application of a self-developed deep learning (DL) algorithm for the real-time localization and classification of both vocal cord carcinoma and benign vocal cord lesions. The algorithm was trained and validated upon a dataset of videos and photos collected from our own department, as well as an open-access dataset named "Laryngoscope8". The algorithm correctly localizes and classifies vocal cord carcinoma on still images with a sensitivity between 71% and 78% and benign vocal cord lesions with a sensitivity between 70% and 82%. Furthermore, the best algorithm had an average frame per second rate of 63, thus making it suitable to use in an outpatient clinic setting for real-time detection of laryngeal pathology. We have demonstrated that our developed DL algorithm is able to localize and classify benign and malignant laryngeal pathology during endoscopy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.