Abstract

Most of the over 1600 mutations and sequence variants identified to date in the cystic fibrosis transmembrane conductance regulator (CFTR) gene are point mutations or small deletions/insertions detectable by conventional sequencing. However, large rearrangements (deletions, duplications, or insertion/deletion mutations) have recently been reported to constitute 1-2% of CFTR mutations. The CFTR sequencing protocol at ARUP Laboratories interrogates the coding regions of all 27 exons and all intron/exon boundaries of the gene. This study was undertaken to determine whether testing for large gene rearrangements could improve the mutation detection rate. Nine cases with abnormal quantitative pilocarpine iontophoresis sweat chloride (SC) values (>60 mEq/L) and 20 cases with borderline SC levels (40-60 mEq/L) with only one or no mutations detected by the ARUP 32 mutation panel, including the 23 mutations recommended by American College of Medical Genetics (ACMG) for carrier screening, followed by sequencing, were tested using a multiplex ligation-dependent probe amplification (MLPA) assay. MLPA analysis identified one deletion among nine patients with SC >60 who had previously been tested with sequencing. None of the cases with borderline SC levels showed rearrangements. The MLPA assay for detection of large rearrangements may be valuable in individuals with positive SC levels where one or no mutations have been identified by sequencing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.