Abstract
A method for mapping the separation and transition of flow over a slowly pitching airfoil with high angular resolution is presented. An array of surface-mounted hot-film sensors is used to record simultaneous corresponding voltages. The method makes use of windowed correlation and spectral signatures of hot-film sensor voltages in synchronization with a servo-motor controlling airfoil pitch angle. Results are given for a NACA-0012 airfoil at three airspeeds at pitch angles of less than 6 deg. The airspeeds correspond to a region of known aeroelastic instability; they are situated between chord Reynolds numbers of 50,000 and 130,000. Tests in static and quasi-static pitch motion schedules were conducted. The quasi-static airfoil was sinusoidally pitching at 0.025 Hz between −6 deg and +6 deg (corresponding to a half-chord based reduced frequency between 0.0011 and 0.0020) and the detected separation and transition agreed very well with the static case. These results constitute a verification of the method used and provide insight into the size and location of the laminar separation bubble at transitional Reynolds numbers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.