Abstract
The key objective of a Distributed Denial of Service (DDoS) attack is to compile multiple systems across the Internet with infected zombies/agents and form botnets of networks. Such zombies are designed to attack a particular target or network with different types of packets. The infected systems are remotely controlled either by an attacker or by self-installed Trojans (e.g. roj/Flood-IM) that are programmed to launch packet floods. Within this context, the purpose of this paper is to detect and mitigate known and unknown DDoS attacks in real time environments. We have chosen an Artificial Neural Network (ANN) algorithm to detect DDoS attacks based on specific characteristic features (patterns) that separate DDoS attack traffic from genuine traffic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.