Abstract

A non-invasive technique using knee joint vibroarthographic (VAG) signals can be used for the early diagnosis of knee joint disorders. Among the algorithms devised for the detection of knee joint disorders using VAG signals, algorithms based on entropy measures can provide better performance. In this work, the VAG signal is preprocessed using wavelet decomposition into sub band signals. Features of the decomposed sub bands such as approximate entropy, sample entropy & wavelet energy are extracted as a quantified measure of complexity of the signal. A feature selection based on Principal Component Analysis (PCA) is performed in order to select the significant features. The extracted features are then used for classification of VAG signal into normal and abnormal VAG using support vector machine. It is observed that the classifier provides a better accuracy with feature selection using principal component analysis. And the results show that the classifier was able to classify the signal with an accuracy of 82.6%, error rate of 0.174, sensitivity of 1.0 and specificity of 0.888.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.