Abstract

BackgroundThis paper addresses the problem of detecting sleep spindles and K-complexes in human sleep EEG. Sleep spindles and K-complexes aid in classifying stage 2 NREM human sleep. New methodWe propose a non-linear model for the EEG, consisting of a transient, low-frequency, and an oscillatory component. The transient component captures the non-oscillatory transients in the EEG. The oscillatory component admits a sparse time–frequency representation. Using a convex objective function, this paper presents a fast non-linear optimization algorithm to estimate the components in the proposed signal model. The low-frequency and oscillatory components are used to detect K-complexes and sleep spindles respectively. Results and comparison with other methodsThe performance of the proposed method is evaluated using an online EEG database. The F1 scores for the spindle detection averaged 0.70 ± 0.03 and the F1 scores for the K-complex detection averaged 0.57 ± 0.02. The Matthews Correlation Coefficient and Cohen's Kappa values were in a range similar to the F1 scores for both the sleep spindle and K-complex detection. The F1 scores for the proposed method are higher than existing detection algorithms. ConclusionsComparable run-times and better detection results than traditional detection algorithms suggests that the proposed method is promising for the practical detection of sleep spindles and K-complexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.