Abstract

For the direct investigation of intranuclear dynamics in living cells, extremely deformed nuclei of basipetally centrifuged protonemal cells of the fernAdiantum capillus-veneris were manipulated by the laser trap and the laser scalpel. Whereas the nucleolus was tightly fixed at the central position inside the non-centrifuged nucleus and proved to be immovable by the optical trap, it could easily be trapped and moved towards three directions inside the bubble-like terminal widening of the basal thread-like extension of centrifuged nuclei. Due to the connection of the nucleolus to the chromatin inside the nuclear thread (NT), moving was not possible against the direction of the nuclear apical main body. Nucleoli in recovered nuclei were again immovable, thus indicating the presence of a dynamic nucleolar anchoring system inside the nucleus. When the nucleolus in the bubble was arrested during the thread shortening process by the optical trap, the acropetal movement of the bubble continued. Probably due to dragging forces, some nucleoli became stretched, and a thick strand of a still unknown composition stretched between the nucleolus and the insertion site of the shortening NT. To assess whether the shrinking of the nuclear envelope (NE) and the shortening of the chromatin inside the NT were independent processes, the chromatin above the bubble was cut inside the NT by the laser scalpel. After severance, a gap between the nucleolus and the end of the chromatin strand in the NT indicated the shortening of the chromatin inside the NT. From these findings it was concluded that a shortening force was existing in the chromatin of the NT and that probably no physical link existed between the chromatin and the NE.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call