Abstract

The reversible denaturation of Escherichia coli alkaline phosphatase (AP) was followed by monitoring changes in enzymatic activity as well as by measurements of the time-resolved room temperature phosphorescence from Trp 109. It is well known that the denaturants, ethylene diamine tetraacetic acid (EDTA), acid and guanidine hydrochloride (GdnHCI) inactivate AP by different mechanisms as reflected by differences in the time dependence of inactivation. However, further information about structural changes that result during inactivation is obtained by measurement of the phosphorescence intensity and radiative decay rate. Time-resolved tryptophan phosphorescence is exquisitely sensitive to changes in the local environment of the emitting residue, unlike the steady state phosphorescence intensity which is a composite of both the lifetime and concentration of the emitting protein species. The results show that while inactivation in EDTA proceeds by loss of the zinc ion as expected, denaturation in acid or GdnHCl produces a heterogeneous population of AP molecules, detected by a distribution analysis of the phosphorescence lifetime, which may reflect multiple pathways to the final unfolded state. Time-resolved phosphorescence also demonstrates the existence of an enzymatically active but structurally less rigid intermediate state during unfolding. As the rigidity decreases, the susceptibility to further denaturation decreases at lower pH but increases with GdnHCl concentration. The experiments provide new insight into the mechanism of denaturation of AP and demonstrate the sensitivity of time-resolved room temperature phosphorescence to the structural details of intermediate states produced during unfolding of proteins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.