Abstract

Using a commercial mass spectrometer interfaced with an atmospheric flow tube (AFT) allowed for the detection of a variety of inorganic compounds used as oxidizers in homemade explosives (HMEs) at picogram levels. The AFT provides reaction times of between 3 and 5 s with flows of 6 L/min, enabling detection levels, after thermal desorption, similar to those previously demonstrated for RDX vapor in the low parts per quadrillion range. The thermal desorption of chlorate and perchlorate salts resulted in the production of the corresponding anions which have higher electron affinities than that of the nitrate reactant ions. A dielectric barrier discharge, used as the ionization source, produced the nitrate reactant ions. In some instances, the molecular salt formed adducts with the nitrate, chlorate, and/or perchlorate anions, giving insight into the original identity of the salt cation. Urea nitrate, guanidine nitrate, and potassium nitrate were also detected as adducts with the nitrate reactant ion. The direct room-temperature vapor detection of urea nitrate and hydrogen peroxide, which have relatively high vapor pressures compared to the other salts in this study, is also demonstrated. Room-temperature vapor detection of chlorate and perchlorate salts is possible by the addition of a dilute acid which converts the salt into a more volatile acidic form. A discussion of the instrumentation, methods used, and the ionization chemistry is provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.