Abstract
The caspase family of proteases includes key regulators of apoptosis and inflammation. The caspases can be divided into two groups, the initiator caspases and the executioner caspases. Initiator caspases include caspase-2, caspase-8, and caspase-9 and are activated by proximity-induced dimerization upon recruitment to large molecular weight protein complexes called activation platforms. This protocol describes an imaging-based technique called caspase Bimolecular Fluorescence Complementation (BiFC) that measures induced proximity of initiator caspases. This method uses nonfluorescent fragments of the fluorescent protein Venus fused to initiator caspase monomers. When the caspase is recruited to its activation platform, the resulting induced proximity of the caspase monomers facilitates refolding of the Venus fragments into the full molecule, reconstituting its fluorescence. Thus, the assembly of initiator caspase activation platforms can be followed in single cells in real time. Induced proximity is the most apical step in the activation of initiator caspases, and therefore, caspase BiFC is a robust and specific method to measure initiator caspase activation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.