Abstract

We report for the first time infrared spectra of three non-heme pseudo-octahedral iron(V) nitride complexes with assigned Fe-N stretching vibrations. The intensities of the Fe-N bands in two of the complexes are extremely weak. Their detection was enabled by the high resolution and sensitivity of the experiments performed at 3 K for isolated complexes in the gas phase. Multireference CASPT2 calculations revealed that the Fe-N bond in the ground doublet state is influenced by two low-lying excited doublet states. In particular, configuration interaction between the ground and the second excited state leads to avoided crossing of their potential energy surfaces along the Fe-N coordinate, which thus affects the ground-state Fe-N stretching frequency and intensity. Therefore, DFT calculated Fe-N stretching frequency strongly depends on the amount of Hartree-Fock exchange potential. As a result, by tuning the amount of Hartree-Fock exchange potential in the B3LYP functional, it was possible to obtain theoretical spectra perfectly consistent with the experimental data. The theory shows that the intensity of the Fe-N stretching vibration can almost vanish due to strong coupling with other stretching modes of the ligands.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.