Abstract

In all professional sports, performance pressure is high at the top level. Therefore, rules are defined and controlled to keep sports fair in accordance e.g. with the Agenda 21 of the International Olympic Committee. However, it’s about money and honour and as a consequence it is obvious that the athletes will go to the limits at all levels or even beyond. This is not only true for performance-enhancing substances to improve the physical capacity but – when sports equipment is involved – also for their optimisation. Thus, rules and related controls are necessary with regard to fairness between competitors but also with regard to their health when chemicals are involved. In table tennis, such chemicals (so-called boosters) are used occasionally – but against the rules – to improve the performance of the rackets. In the present study, several boosters were analysed as well as numerous common racket coverings using ion mobility spectrometry coupled to gas-chromatographic pre-separation. After optimisation of sampling with regard to improving reproducibility, characteristic patterns of volatiles for booster compounds and for racket coverings with different characteristics were developed successfully. In particular, signals related to particular softening agents could be identified and detected even in the untreated coverings. The patterns of volatiles were found to be characteristic for the particular boosters investigated as well as for the particular coverings. Furthermore, those patterns enable a differentiation between booster and covering or – in other words – between rule-consistent racket coverings and rule violation by after treatment of the rubber with a booster. After adaptation of the entire procedure to realistic competition situations, the method could be used for proving an infringement against the prohibition of applying such compounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.