Abstract

Porphyrin molecules were immobilized on polycrystalline gold and glassy carbon by coordinating cobalt(II) 5,10,15,20-tetraphenyl-21H,23H-porphine to a 4-aminothiophenol self-assembled monolayer. The resulting electrocatalytic activity of the metalloporphyrin-modified substrates with regard to the oxygen reduction reaction was characterized by means of cyclic voltammetry and scanning electrochemical microscopy (SECM) using nanoelectrodes of well-defined geometry. From substrate generation tip collection (SG-TC) mode SECM measurements performed under steady-state conditions and at different applied substrate potentials, it is possible to extract kinetic information relevant to electrocatalyst substrates such as metalloporphyrin-modified gold and glassy-carbon electrodes. Such an approach allows for the isolation of the unique contribution of the electrocatalyst to the oxygen reduction reaction and peroxide formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.