Abstract

The sixth DNA base 5-hydroxymethylcytosine (5hmC) is the major oxidation product of the epigenetic modification 5-methylcytosine (5mC), mediating DNA demethylation in mammals. Reduced 5hmC levels are found to be linked with various tumors and neurological diseases; therefore, 5hmC is an emerging biomarker for disease diagnosis, treatment, and prognosis. Due to its advantages of being sterile, easily accessible in large volumes, and noninvasive to patients, urine is a favored diagnostic biofluid for 5hmC analysis. Here we developed an accurate, sensitive, and specific assay for quantification of 5mC, 5hmC, and other DNA demethylation intermediates in human urine. The urinary samples were desalted and enriched using off-line solid-phase extraction, followed by stable isotope dilution HPLC-MS/MS analysis for 5hmC and 5mC. By the use of ammonium bicarbonate (NH4HCO3) as an additive to the mobile phase, we improved the online-coupled MS/MS detection of 5mC, 5hmC, and 5-formylcytosine (5fC) by 1.8-14.3 times. The recovery of the method is approximately 100% for 5hmC, and 70-90% for 5mC. The relative standard deviation (RSD) of the interday precision is about 2.9-10.6%, and that of the intraday precision is about 1.4-7.7%. By the analysis of 13 volunteers using the developed method, we for the first time demonstrate the presence of 5hmC in human urine. Unexpectedly, we observed that the level of 5hmC (22.6 ± 13.7 nmol/L) is comparable to that of its precursor 5mC (52.4 ± 50.2 nmol/L) in human urine. Since the abundance of 5hmC (as a rare DNA base) is 1 or 2 orders of magnitude lower than 5mC in genomic DNA, our finding probably implicates a much higher turnover of 5hmC than 5mC in mammalian genomic DNA and underscores the importance of DNA demethylation in daily life.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.