Abstract

e16546 Background: Recent genomic surveys of prostate cancer have identified somatic mutations in metastatic castration-resistant prostate cancer (mCRPC). In this study, we examined mCRPC patients for AR aberrations and mutations in the HRD (homologous recombination DNA-repair) pathway which may confer platinum or PARP inhibitor sensitivity. Methods: A novel targeted-hybrid-capture NGS assay capable of identifying deleterious mutations, copy number amplification and gene copy loss, was applied to circulating, cell-free DNA (cfDNA) extracted from plasma samples from 20 mCRPC patients. Samples were collected between 3/2010 – 10/2015 and stored at -20C. The gene panel used in the assay included AR and several genes in the HRD pathway — ATM, BARD1, BRCA1, BRCA2, BRIP1, CDK12, CHEK2, FANCA, HDAC2, NBN, PALB2, and RAD51. Sequencing libraries created with the cfDNA extracted from 2.8-4 mLs of plasma had an average unique read coverage depth of 2282 genome equivalents (range 445 – 5136, median 2181). Results: Somatic variations were observed in 17 of the 20 samples analyzed. Copy number variation (CNV) was observed in 11 samples. AR amplification, linked to resistance to abiraterone and enzalutamide, was observed in 30% (6) of samples. Canonical AR ligand binding domain mutations, such as T787A and L702H were also detected. ATM, BRCA1, BRCA2, HDAC2, and FANCA gene deletions were also detected, as well as frameshift, nonsense, and other deleterious mutations in HRD genes. Significant CNV in multiple genes was observed in at least 5 patient samples. Mutations were detected across the entire collection date range, speaking to the robustness of cfDNA. Conclusions: Non-invasive tumor mCRPC genotyping appears to be feasible. The ability to detect HRD gene alterations suggests cfDNA testing may be suitable for the detection of HRD pathway defects and overall genome instability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.