Abstract

A simple bifunctional colorimetric/fluorescent sensing assay is demonstrated for the detection of HIV-1 specific antibodies. This assay makes use of a short peptide sequence coupled to an environmentally sensitive dye that absorbs and emits in the visible portion of the spectrum. The core peptide sequence is derived from the highly antigenic six-residue epitope of the HIV-1 p17 protein and is situated adjacent to a terminal cysteine residue which enables site-specific fluorescent labeling with Cy3 cyanine dye. Interaction of the Cy3-labeled p17 peptide with monoclonal anti-p17 antibody resulted in an up to 4-fold increase in dye absorption and greater than 5-fold increase in fluorescent emission, yielding a limit of detection as low as 73 pM for the target antibody. This initial study demonstrates both proof-of-concept for this approach and suggests that the resulting sensor could potentially be used as a rapid screening method for HIV-1 infection while requiring minimal equipment and reagents. The potential for utilizing this assay in simple field-portable point-of-care and diagnostic devices is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call