Abstract
This unit describes immunocytochemical detection of phosphorylated histone H2AX for revealing the presence of DNA double-strand breaks. Double-strand breaks indicate DNA damage induced by ionizing radiation or by treatment with antitumor drugs such as DNA topoisomerase inhibitors. However, double-strand breaks can also be intrinsic, occurring in healthy, nontreated cells for a variety of reasons, and are generated in the course of DNA fragmentation in apoptotic cells. The unit presents strategies to distinguish radiation- or drug-induced breaks from those intrinsically formed in untreated cells or associated with apoptosis. The protocol describes the immunocytochemical detection of histone H2AX phosphorylated on Ser-139 combined with measurement of DNA content to identify cells that have DNA double-strand breaks and to concurrently assess their cell cycle phase. The detection is based on indirect immunofluorescence using a FITC-labeled secondary antibody, and DNA is counterstained with propidium iodide (PI). Cellular RNA, which may be stained by PI, is removed with RNase A.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.