Abstract

BackgroundRapid diagnostic tests (RDTs) targeting histidine rich protein 2(HRP2) are widely used for diagnosis of Plasmodium falciparum infections. Besides PfHRP2, the PfHRP3 antigen contributes to the detection of P. falciparum infections in PfHRP2 RDTs. However, the performance HRP2-based RDT is affected by pfhrp2/3 gene deletions resulting in false-negative test results. The objective of this study was to determine the presence and prevalence of pfhrp2/3 gene deletions including the respective flanking regions among symptomatic patients in Assosa zone, Northwest Ethiopia.MethodsA health-facility based cross-sectional study was conducted in febrile patients seeking a malaria diagnosis in 2018. Blood samples were collected by finger-prick for microscopic examination of blood smears, malaria RDT, and molecular analysis using dried blood spots (DBS) prepared on Whatman filter paper. A total of 218 P. falciparum positive samples confirmed by quantitative PCR were included for molecular assay of pfhrp2/3 target gene.ResultsOf 218 P. falciparum positive samples, exon 2 deletions were observed in 17.9% of pfhrp2 gene and in 9.2% of pfhrp3 gene. A high proportion of deletions in short segments of pfhrp2 exon1-2 (50%) was also detected while the deletions of the pfhrp3 exon1-2 gene were 4.1%. The deletions were extended to the downstream and upstream of the flanking regions in pfhrp2/3 gene (above 30%). Of eighty-six PfHRP2 RDT negative samples, thirty-six lacked pfhrp2 exon 2. Five PfHRP2 RDT negative samples had double deletions in pfhrp2 exon 2 and pfhrp3 exon2. Of these double deletions, only two of the samples with a parasite density above 2000 parasite/µl were positive by the microscopy. Three samples with intact pfhrp3 exon2 in the pfhrp2 exon2 deleted parasite isolates were found to be positive by PfHRP2 RDT and microscopy with a parasite density above 10,000/µl.ConclusionThis study confirms the presence of deletions of pfhrp2/3 gene including the flanking regions. Pfhrp2/3 gene deletions results in false-negative results undoubtedly affect the current malaria control and elimination effort in the country. However, further countrywide investigations are required to determine the magnitude of pfhrp2/3 gene deletions and its consequences on routine malaria diagnosis.

Highlights

  • Rapid diagnostic tests (RDTs) targeting histidine rich protein 2(HRP2) are widely used for diagnosis of Plasmodium falciparum infections

  • Results quantitative PCR (qPCR), microscopy and PfHRP2 RDTs A total of 218 P. falciparum positive samples by qPCR were included based on inclusion criteria for molecular analysis of pfhrp2, pfhrp3 gene and their flanking gene

  • PfHRP2 RDT and microscopy detected approximately 60% of infections that were detectable by qPCR

Read more

Summary

Introduction

Rapid diagnostic tests (RDTs) targeting histidine rich protein 2(HRP2) are widely used for diagnosis of Plasmodium falciparum infections. Besides PfHRP2, the PfHRP3 antigen contributes to the detection of P. falciparum infections in PfHRP2 RDTs. the performance HRP2-based RDT is affected by pfhrp2/3 gene deletions resulting in false-negative test results. Despite significant progress made in the last decade towards malaria control and elimination in most malariaendemic countries in the world, malaria is still a major. Plasmodium falciparum is responsible for most of the malaria-associated deaths in malaria endemic countries. Microscopy and rapid diagnostic tests (RDTs) are the most common front-line diagnostic tools in clinical settings. Molecular diagnostic methods are recently used in countries with low-transmission setting and/or approaching malaria elimination phase [4]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call