Abstract

ABSTRACTA novel rhodamine-based chemosensor (R) was designed and synthesised for selective recognition of Hg2+ ion in real water samples collected from different places. The chemosensor was prepared in green condition with high yield. The selectivity of R was examined with various metal ions, among which only Hg2+ was identified selectively with off–on mechanism along with enhancement of fluorescence. Metal ions recognition has been carried out using UV–vis and fluorescence studies taking µM concentration of chemosensor R in HEPES buffer. The detection limit of R was calculated and found to be 4.4 × 10–9 M. Quantum chemical (DFT) calculation was carried out in order to acquire knowledge about the stability of R in presence of Hg2+ ions. Cell viability and fluorescence microscopic experiments showed R as cytocompatible and can be used as a fluorescent probe for detecting Hg2+ in living cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.